Philosophical approach to the process of teaching and learning science in the Warren County School District (WCS).

In WCS there is an emphasis on both traditional and innovative teaching mythologies of science curriculum. Whereas traditional laboratory experiences provide opportunities to demonstrate how science is constant, historic, probabilistic, and replicable; intuitive-practical solutions to scientific problem solving are encouraged. Even though there are no fixed steps that all scientists follow, scientific investigations usually involve collections of relevant evidence, the use of logical reasoning, the application of imagination to devise hypotheses, and explanations to make sense of collected evidence. Student engagement in scientific investigation provides background for understanding the nature of scientific inquiry. In addition, the science process skills necessary for inquiry are acquired through active experience. The process skills support development of reasoning and problem-solving ability and are the core of scientific methodologies.
UNIT 1 Motion, Speed, and Velocity

<table>
<thead>
<tr>
<th>Suggested Time Frame (Weeks)</th>
<th>Topic/Standard</th>
<th>Essential Questions/Learning Intentions</th>
<th>Key Vocabulary</th>
<th>Unit Assessments and NCFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT 1 Motion, Speed, and Velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Weeks (1-2)** | PSc.1.1.1 Explain motion in terms of frame of reference, distance and displacement. | - Describe velocity as a relationship between displacement and time.
- Understand that all motion is relative (requires a frame of reference).
- Describe motion as a change in position.
- Utilize graphs to determine speed and velocity. | Motion
Average Speed
Velocity
Frame of Reference
Distance
Displacement
Uniform Motion
Slope | TBD by Site Administration |
| PSc.1.1.2 Compare speed, velocity, acceleration, and momentum using investigations, graphing, scalar quantities and vector quantities. | | | | |

UNIT 2: Acceleration and Forces

<table>
<thead>
<tr>
<th>Suggested Time Frame (Weeks)</th>
<th>Topic/Standard</th>
<th>Essential Questions/Learning Intentions</th>
<th>Key Vocabulary</th>
<th>Unit Assessments and NCFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT 2: Acceleration and Forces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Weeks (3-4)** | PSc.1.2.1 Explain how gravitational force affects the weight of an object and the velocity of an object in free fall. | - Describe acceleration as a relationship between velocity and time.
- Analyze graphical data to determine velocity and acceleration.
- Investigate the acceleration due to gravity as an example of uniformly changing velocity (where \(g = 9.8 \text{ m/s}^2 \)).
- Distinguish between the mass and weight of an object with weight as the relationship between the acceleration due to gravity. | Acceleration
Inertia
Force
Net Force
Balanced Forces
Newton’s First Law of Motion
Newton’s Second Law of Motion
Newton’s Third Law of Motion
Action-Reaction Pairs
Mass
Weight
Friction
Gravity
\(F = ma \) | TBD by Site Administration |
and the mass of the object.

- Investigate friction as a force that opposes the motion of an object.
- Analyze the motion of an object in free fall.

UNIT 3: Energy and Work

<table>
<thead>
<tr>
<th>Weeks (5-6)</th>
<th>PSc.3.1.1</th>
<th>Understand types of Energy, conservation of Energy, and Energy Transfer.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSc.3.1.2</td>
<td>Explain the Law of Conservation of Energy in a mechanical system in terms of Kinetic energy, Potential energy, and Heat.</td>
</tr>
<tr>
<td></td>
<td>PSc.3.1.3</td>
<td>Explain Work in terms of the relationship among the force applied to an object, the resulting displacement of an object, and the energy transferred to an object.</td>
</tr>
<tr>
<td></td>
<td>PSc.3.1.4</td>
<td>Explain the relationship among work, power, and simple machines both qualitatively and quantitatively.</td>
</tr>
</tbody>
</table>

- Analyze and investigate different forms of potential energy: elastic, gravitational, chemical, electrical, and nuclear.
- Differentiate between kinetic and potential energy.
- Calculate potential and kinetic energy mathematically.
- Calculate work as the product of force multiplied by distance.
- Investigate the scientific meaning of “work” in terms of movement and forces.
- Explain the relationship between work and power.
- Distinguish between each of the six types of simple machines.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD by Site Administration</td>
<td></td>
</tr>
</tbody>
</table>
UNIT 4: Thermal Energy and Heat

<table>
<thead>
<tr>
<th>Week (7)</th>
<th>PSc.3.1.1</th>
<th>Identify the characteristics of a substance that affect its ability to absorb or release thermal energy.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSc.3.1.2</td>
<td>Explain the Law of Conservation of Energy in a mechanical system in terms of Kinetic energy, Potential energy, and Heat.</td>
</tr>
<tr>
<td></td>
<td>Identify the characteristics of a substance that affect its ability to absorb or release thermal energy.</td>
<td>Thermal Energy</td>
</tr>
<tr>
<td></td>
<td>Explain thermal energy and how it is transferred.</td>
<td>Heat</td>
</tr>
<tr>
<td></td>
<td>Explain the direction of heat flow (from warmer to cooler objects).</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Differentiate between heat and temperature.</td>
<td>Conduction</td>
</tr>
<tr>
<td></td>
<td>Differentiate between conduction, convection, and radiation as types of heat transfer.</td>
<td>Convection</td>
</tr>
</tbody>
</table>

UNIT 5: Electricity and Magnetism

<table>
<thead>
<tr>
<th>Week (8)</th>
<th>PSc.3.3.1</th>
<th>Compare/contrast the relationship between like and opposite charges.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSc.3.3.2</td>
<td>Explain how current is affected by changes in composition, length, temperature, and diameter of wire.</td>
</tr>
<tr>
<td></td>
<td>PSc.3.3.3</td>
<td>Distinguish between series and parallel circuits.</td>
</tr>
<tr>
<td></td>
<td>Static Electricity</td>
<td>Current Electricity</td>
</tr>
<tr>
<td></td>
<td>Circuit</td>
<td>Open Circuit</td>
</tr>
<tr>
<td></td>
<td>Closed Circuit</td>
<td>Electric Power</td>
</tr>
<tr>
<td></td>
<td>Series Circuit</td>
<td>Parallel Circuit</td>
</tr>
<tr>
<td></td>
<td>Ohm’s Law</td>
<td>Resistor</td>
</tr>
<tr>
<td></td>
<td>Switch</td>
<td>Voltage</td>
</tr>
</tbody>
</table>

TBD by Site Administration
PSc.3.3.4
Explain magnetism in terms of domains, interactions of poles, and magnetic fields.

PSc.3.3.5
Explain the practical application of Magnetism.

- Describe simple series and parallel DC circuits in terms of Ohm’s Law.
- Describe how properties such as wire composition, wire length, temperature, and diameter affect the flow of electricity.
- Investigate open versus closed circuits.
- Solve simple Ohm’s Law and Power equations for DC circuits.
- Describe the behavior of magnetic domains.
- Investigate the attraction of unlike poles and the repulsion of like poles.
- Explain why a nail can be temporarily magnetized in terms of magnetic domains.

UNIT 6: Mechanical/Electromagnetic Waves

<table>
<thead>
<tr>
<th>PSc.3.2.1</th>
<th>Understand the nature of waves.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the relationships among wave frequency, wave period, wave velocity, amplitude, and wavelength through calculation and investigation.</td>
<td></td>
</tr>
</tbody>
</table>

- Explore the differences between mechanical and compressional waves.
- Identify the basic characteristics of a transverse wave: trough, crest, amplitude, and wavelength.
- Identify the basic

Mechanical Wave
- Transverse Wave
- Compressional Wave

Electromagnetic Wave
- Electromagnetic Wave
- Electromagnetic Spectrum
- Radiation
- Microwaves
- Infrared Waves
- Visible Light
Week (9)

- **PSc.3.2.3**
 Classify waves as transverse or compressional

- **PSc.3.2.4**
 Illustrate the wave interactions of reflection, refraction, diffraction, and interference.

- **Week (10)**

- **PSc.2.1.1**
 Classify matter as homogeneous or heterogeneous; pure substance or mixture; element or compound; metals, nonmetals, or metalloids; solution, colloid, or suspension.

- **PSc.2.1.2**
 Explain the phases of matter and the physical changes that matter undergoes.

- **PSc.2.1.3**
 Compare general physical and chemical properties of various types of matter.

- **Unit 7 Properties of Matter**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves</td>
<td>Compare mechanical, electromagnetic, and surface waves using their characteristics.</td>
</tr>
<tr>
<td>Compressional Waves</td>
<td>Classify waves as transverse or compressional.</td>
</tr>
<tr>
<td>Wave Interactions</td>
<td>Illustrate wave interactions including reflection, refraction, diffraction, and interference.</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>What are the indicators of a physical/chemical change?</td>
</tr>
<tr>
<td>Chemical Properties</td>
<td>What constitutes a homogeneous/heterogeneous mixture?</td>
</tr>
<tr>
<td>Physical Changes</td>
<td>Differentiate between an element and compound.</td>
</tr>
<tr>
<td>Chemical Changes</td>
<td>Differentiate between chemical/physical changes.</td>
</tr>
<tr>
<td>Phase Changes</td>
<td>Understand that phase changes (changes of state) are physical changes.</td>
</tr>
</tbody>
</table>

Ultraviolet Waves
- X-Rays
- Gamma Rays
- Reflection
- Refraction
- Diffraction
- Interference
- Crest
- Trough
- Amplitude
- Wavelength
- Frequency
- Period
- Sonar
- Echolocation
- Ultrasound
- Decibels

Unit 7 Properties of Matter

- **Chemical Change**
 - Chemical properties
 - Physical change
 - Physical properties
 - Melting point
 - Boiling point
 - Heterogeneous
 - Homogeneous
 - Element
 - Compound
 - Mixture
 - Solution
 - Suspension
 - Colloid
 - Density
 - Conservation of Matter
UNIT 8 : Atomic Structure and Properties

| Weeks (11-12) | PSc.2.1.4 | Interpret the data presented in the Bohr model diagrams and dot diagrams for atoms and ions of elements in groups one through eighteen.
| | PSc.2.2.1 | Infer valence electrons, oxidation number, and reactivity of an element based on its location in the Periodic Table.
| | **Compare/contrast the physical and chemical properties of metals, nonmetals, and metalloids.**
| | **Describe the structure of an atom: including charge, relative mass, and the location of protons, neutrons, and electrons.**
| | **Calculate the number of protons, electrons, and neutrons in an atom when given its atomic number and average atomic mass.**
| | **Distinguish between period and group.**
| | **Explain Bohr’s model, showing how electrons fill energy levels.**
| | Periodic Table Group
| | Period
| | Proton
| | Neutron
| | Electron
| | Metal
| | Nonmetal
| | Transition metal
| | Halogen
| | Noble Gas
| | Isotope
| | Nucleus
| | Electron Cloud
| | Atom
| | Average Atomic Mass
| | Ground state
| | Excited state

UNIT 9 Chemical Bonding

| Weeks (13-14) | PSc.2.2.2 | Infer type of chemical bond that occurs, whether covalent, ionic, or metallic, in a given substance.
| | PSc.2.2.3 | Predict chemical formulas and names for simple compounds based on knowledge of bond formation and naming conventions.
| | **Predict oxidation number based on the element’s location on the Periodic Table (excluding transition elements).**
| | **Describe how ionic, covalent, and metallic bonds form and provide examples of each.**
| | Ion
| | Ionic Bond
| | Cation
| | Anion
| | Polyatomic
| | Ion
| | Covalent Bond
| | Metallic Bond
| | Polar Bond
| | Non-polar Bond
| | Oxidation Number
| | Hydrate
| | Lewis Electron Dot

TBD by Site Administration
UNIT 10: Chemical Equations/Reactions

<table>
<thead>
<tr>
<th>Week (15)</th>
<th>PSc.2.2.4</th>
<th>Exemplify the law of conservation of mass by balancing chemical equations.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSc.2.2.5</td>
<td>Classify types of reactions such as synthesis, decomposition, single replacement, or double replacement</td>
</tr>
<tr>
<td></td>
<td>How does the law of conservation of mass apply to balancing equations?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identify the reactants and products in a simple chemical equation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identify the types of reactions (synthesis, decomposition, single replacement, and double replacement).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBD by Site Administration</td>
<td></td>
</tr>
</tbody>
</table>

UNIT 11: Solutions/Acids and Bases

<table>
<thead>
<tr>
<th>Week (16)</th>
<th>PSc.2.2.6</th>
<th>Summarize the characteristics and interactions of acids or bases.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Identify the solvent and solute in a given solution.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine the factors which change the solubility of a substance (temperature, stirring, crystal size, etc.).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyze a solubility curve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare/contrast the physical and chemical characteristics of acids, bases, and neutral substances.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify and describe the use of pH indicators.</td>
</tr>
<tr>
<td></td>
<td>Dissociation Ion Solution Solubility Solute Solvent Solubility Curve pH Scale Acid Base Buffer pH Indicator Neutralization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBD by Site Administration</td>
<td></td>
</tr>
</tbody>
</table>
UNIT 12 Radioactivity

<table>
<thead>
<tr>
<th>Week (17)</th>
<th>PSc.2.3.1</th>
<th>PSc.2.3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compare nuclear reactions including alpha decay, beta decay, and gamma decay; nuclear fusion and nuclear fission.</td>
<td>Exemplify the radioactive decay of unstable nuclei using the concept of half-life.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week (18)</th>
<th>Review/NC Final Exam</th>
</tr>
</thead>
</table>

- Distinguish between fission and fusion.
- Differentiate between the three types of nuclear decay (alpha, beta, and gamma).
- Calculate the half-life of a radioactive sample.

<table>
<thead>
<tr>
<th>Alpha particles</th>
<th>Beta particle</th>
<th>Gamma ray</th>
<th>Half-life</th>
<th>Fusion</th>
<th>Fission</th>
<th>Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha particles</td>
<td>Beta particle</td>
<td>Gamma ray</td>
<td>Half-life</td>
<td>Fusion</td>
<td>Fission</td>
<td>Radiation</td>
</tr>
</tbody>
</table>

TBD by Site Administration